

УЧЕБНОЕ ПОСОБИЕ

Семейство: Настенные котлы

Группа: A

Модель: MICROSYSTEM

Издание: 26/04/2001

СОДЕРЖАНИЕ

1. ПРЕЗЕНТАЦИЯ	ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.
1.1 ГРУППА МТС	Ошибка! Заклалка не опрелелена.
1.1.1 Цели компании	
1.1.2 Развитие компании	•
1.1.3 Глобализация	
1.1.4 Гарнтии и качество	
2. МОДЕЛЬНЫЙ РЯД	
2.1 ИДЕНТИФИКАЦИЯ МОДЕЛЬНОГО РЯДА	
2.2 РАЗМЕРЫ И РАСПОЛОЖЕНИЕ ФИТИНГОВ	
2.3 ПОДКЛЮЧЕНИЕ ВОДОНАГРЕВАТЕЛЯ	
3. ГИДРАВЛИЧЕСКАЯ СИСТЕМА	
3.1 РЕЖИМ ОТОПЛЕНИЯ	Ошибка! Закладка не определена.
3.2 РЕЖИМ ГВС	Ошибка! Закладка не определена.
3.2.1 Привод 3-входового клапана	
3.3 ЦИРКУЛЯЦИОННЫЙ НАСОС	
3.4 ОСНОВНОЙ ТЕПЛООБМЕННИК	Ошибка! Закладка не определена.
3.5 ГИДРАВЛИЧЕСКАЯ ГРУППА	
3.6 РАСПРЕДЕЛИТЕЛЬНЫЙ УЗЕЛ	Ошибка! Закладка не определена.
3.7 РЕЛЕ ДАВЛЕНИЯ	
3.8 РАСШИРИТЕЛЬНЫЙ БАК	Ошибка! Закладка не определена.
4. СИСТЕМА ПОДАЧИ ГАЗА	
4.1 ГАЗОВЫЙ КЛАПАН	
4.1.1 Горелка	
4.1.2 Смена типа газа	
4.1.3 Регулировка давления газа	
4.2 НЕИСПРАВНОСТИ - ПРОВЕРКИ - ОБСЛУЖИВАНИ	LE4
5. СИСТЕМА УДАЛЕНИЯ ПРОДУКТОВ СГОРАНИЯ	ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.
5.1 ОТКРЫТАЯ КАМЕРА	
5.2 ЗАКРЫТАЯ КАМЕРА	Ошибка! Закладка не определена.
5.2.1 Вентилятор	Ошибка! Закладка не определена.
5.2.2 Реле дифференциального давления	
5.3 СИСТЕМЫ ОТВОДА ДЫМА	Ошибка! Закладка не определена.
5.3.1 Коаксиальная	Ошибка! Закладка не определена.
5.3.2 Двухтрубная	Ошибка! Закладка не определена.
5.4 ПРОВЕРКИ	
5.4.1 Проверка эффективности удаления отработанн	ых газов Ошибка! Закладка не определена.
5.4.2 Анализ отработанных газов	Ошибка! Закладка не определена.
6. ЭЛЕКТРИЧЕСКАЯ И ЭЛЕКТРОННАЯ СИСТЕМЫ	ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.
6.1 ОПИСАНИЕ ПЛАТЫ УПРАВЛЕНИЯ	Ошибка! Заклалка не определена
6.1.1 Диаграммы ПУ	
6.1.2 Таблица функций ПУ	
6.2 ЭЛЕКТРОПИТАНИЕ	
6.3 ЛОГИКА И БЕЗОПАСНОСТЬ	
6.3.1 Работа дифференциального прессостата (FFI)	
6.3.2 Работа датчика контроля отработанных газов	
6.3.3 Работа циркуляционного насоса	
6.4 РЕГУЛИРОВКИ	
30/11/2003 1	2

6.4.1	Управление температурой	Ошибка! Закладка не определена
6.4.2	Режимы работы	Ошибка! Закладка не определена
6.4.3	Предохранительный термостат -часы	-комнатный термостат
6.4.4	Рукоятки настройки режимов работы	
6.4.5		Ошибка! Закладка не определена
65 ЛИ	АГНОСТИКА	

ЗАМЕТКИ:

1. ПРЕЗЕНТАЦИЯ

1.1 ГРУППА МТС

1.1.1 Цели компании

МТС – лидирующая интернациональная группа компаний, которые занимаются разработкой, производством, и реализацией водонагревателей и накопительных баков с целью улучшения комфорта и жилищных условий потребителей.

Для достижения этих целей, группа МТС постоянно развивает потребительские свойства своей продукции и сервис и ставит своей задачей реализацию специфических требований потребителей в пределах различных рынков сбыта.

Благодаря постоянному развитию, группа МТС является сегодня лидером в производстве термоэлектрических компонентов, таких, как термостаты, нагревательные элементы, газовые и электрические водонагреватели.

1.1.2 Развитие компании

Индустрия Мерлони была основана в 1930 году. Торговая марка ARISTON была впервые представлена в 1960 и в 80-х годах 20 столетия компания была разделена на три разных компании: Merloni Termosanitari, Merloni Elettrodomestici и Merloni Progetti.

1.1.3 Глобализация

Глобализация группы МТС была начата в 1992 году объединением 12 заводов в 4 странах.

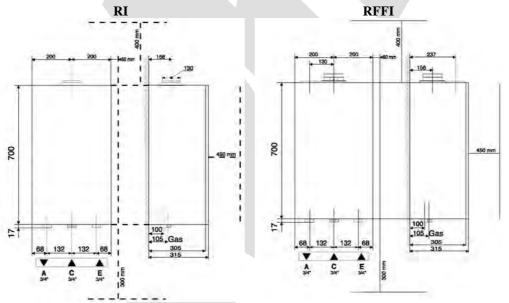
Эти заводы входят в структуру группы, как компании-производители отдельных продуктов. Благодаря тому, что они объединены в группу, появилась возможность совершенствования уровня их специализации при сохранении гибкости производства.

1.1.4 Гарантии и качество

Постоянное изучение рынка, разработка газовой продукции с минимальным выбросом газа NOx, исключение озоноразрушающих элементов и внедрение утилизации продуктов и упаковки – вот основные приоритеты группы МТС. Более того, Группа МТС уже получила сертификат качества системы качества ISO 9001 одобренный EQNet.

ЗАМЕТКИ:

2. МОДЕЛЬНЫЙ РЯД


2.1 ИДЕНТИФИКАЦИЯ МОДЕЛЬНОГО РЯДА.

Названия моделей газовых котлов состоят из серии буквенных и цифровых кодов, как указано ниже:

Описание:	
10 - 15 - 21 - 28	Максимальная мощность в кВт
R	Назначение - отопление
	Указывает на наличие закрытой камеры
FF	сгорания, с выводом продуктов сгорания
	наружу при помощи вентилятора.
I	Электронное зажигание с ионизационным
	контролем пламени

2.2 РАЗМЕРЫ И РАСПОЛОЖЕНИЕ ФИТИНГОВ

Подсоединение котла к магистралям производится достаточно просто. Размеры всех котлов, как с открытой, так и с закрытой камерой идентичны, таким образом, исключаются неудобства при установке. Размеры для сборки и обслуживания компонентов показаны ниже.

Описание:

- А. подача горячей воды в систему отопления
- В. подача газа
- С. возврат воды из системы отопления в котел

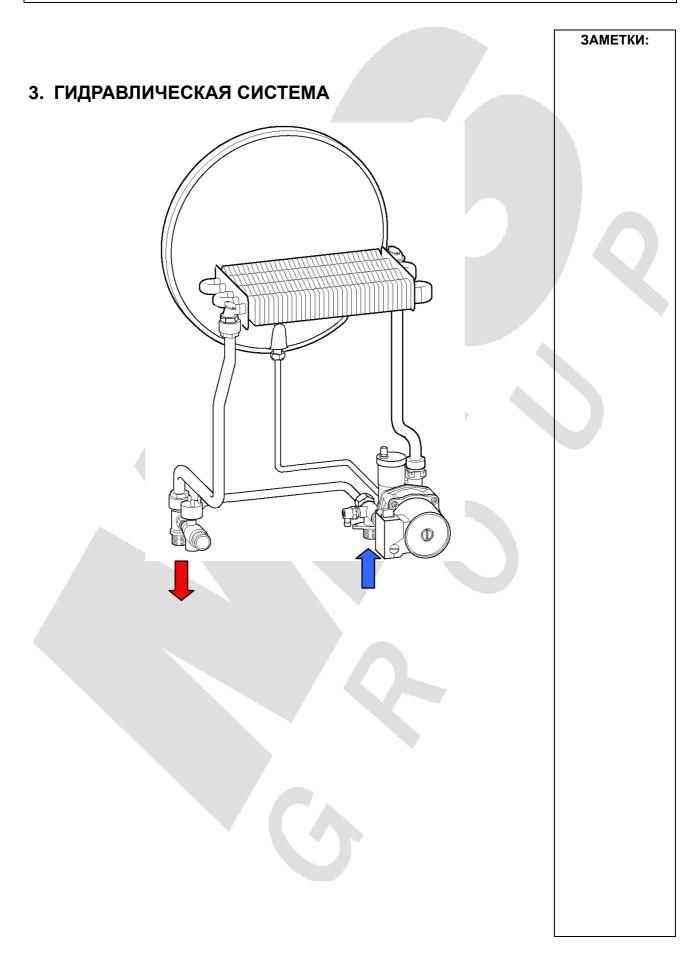
30/11/2003 2

2.3 ПОДКЛЮЧЕНИЕ ВОДОНАГРЕВАТЕЛЯ

В такой конфигурации котел может быть переведен в режим приготовления ГВ в водонагревателе косвенного нагрева.

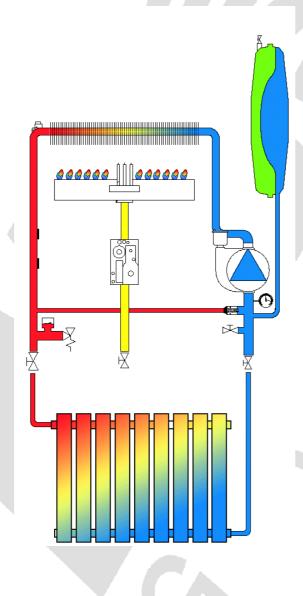
1. min 300 – max 350 мм

Технические данные		BACD 125
Объем	Л	125
Площадь поверхности змеевика	M^2	1,0
Производительность первичного контура	м ³ /ч	2
Производительность ГВС ∆Т=35	л/ч	891
Максимальное энергопотребление ∆Т=35	кВт	36
Производительность ГВС ∆Т=50	л/ч	496
Расход воды за 10 минут ∆Т=35	Л	212
Время нагрева на ΔT =50	мин.	20
Максимальное давление в магистрали подачи холодной воды	бар	10
Максимальное давление в контуре отопления	бар	3


	Модель котла					
Бак косвенного	MicroSystem MicroSystem MicroSystem MicroSys					
нагрева	10	15	21	28		
BACD 125		(x)	(xx)	(xx)		

(х) возможный вариант

(хх) идеальный вариант

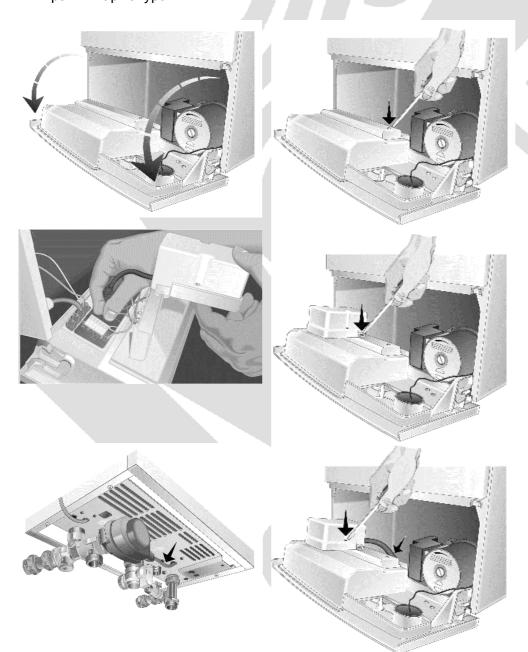


3.1 Режим отопления

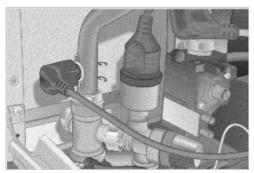
В режиме отопления насос подает воду в основной контур через теплообменник, в котором происходит ее нагрев. На выходе из теплообменника установлен термостат. Реле минимального давления предотвращает розжиг горелки в случае, если давление воды в контуре отопления недостаточное.

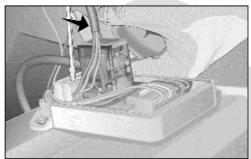
В случае слабой циркуляции воды через радиаторы отопления, автоматический бай-пасс открывается и пропускает воду с минимальной производительностью 350 л/ч.

ЗАМЕТКИ:

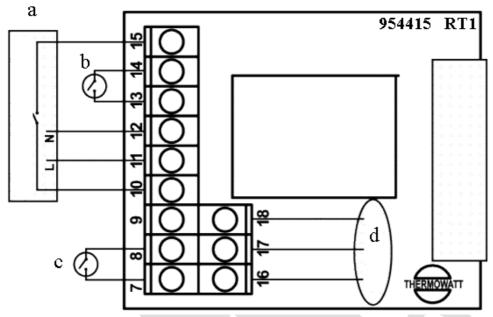

ЗАМЕТКИ:

3.2 Режим приготовления ГВС


Котел, при изготовлении на заводе, монтируется с учетом возможности подсоединения переходникового комплекта для производства ГВ посредством бака косвенного нагрева.


Комплект состоит из следующих частей:

- 1. Электронный блок для соединения плат управления
- 2. 3-входовой клапан с электроприводом для подсоединения подачи горячей воды для нагрева бака
- 3. Ограничительный термостат (80°С), который установлен в баке косвенного нагрева, чтобы контролировать температуру воды из контура отопления, подаваемую в бак
- 4. Краны и арматура

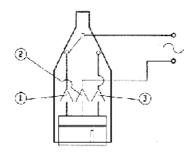


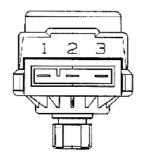
ЗАМЕТКИ:

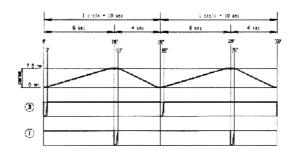
- а. часы таймер на водонагревателе
- b. термостат на водонагревателе
- с. ограничительный термостат (80°C) для водонагревателя
- d. реле привода 3-входового клапана
- 16. ГВС (красный с черными полосами)
- 17. ОТОПЛЕНИЕ (коричневый)
- 18. ОБЩИЙ (белый)
- **N.B.** Между 10 и 15 контактами должна быть установлена перемычка в случае, если часы таймер с целью контроля за приготовлением ГВ не устанавливается.

Если таймер используется, не забудьте убрать перемычку, для подсоединения к плате управления соответствующих проводов, устанавливаемого оборудования. Напряжение питания таймера - 230 В (контакты 11-12).

3.2.1 Привод 3-входового клапана

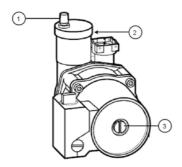

Характеристики:

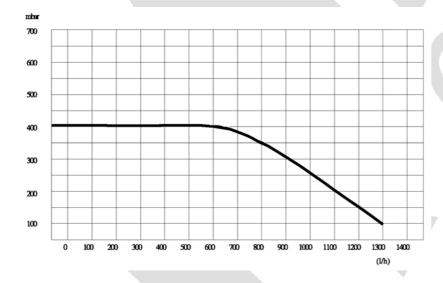

Длина хода:
 7.5 мм


• Время срабатывания: открытие клапана – 6 сек.

закрытие клапана - 4 сек.

• питание: 220 В – 50 Гц


- 1. левый контакт
- 2. общий
- 3. правый контакт

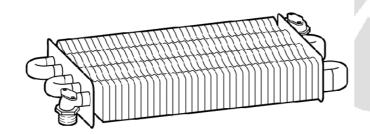

3.3 Циркуляционный насос

Насос оборудован автоматическим воздухоотводчиком, который отделяет воздух в месте наибольшей турбулентности воды.

- 1) Вывод воздуха
- 2) Автоматический воздухоотводчик
- 3) Винт для разблокировки вала насоса
- 230 В 50 Гц однофазный двигатель
- Модель: WILO NFHOL 15/5-IC: 0,33A 88 Вт

Кривая производительности циркуляционного насоса (принимая во внимание гидравлические потери внутри котла)

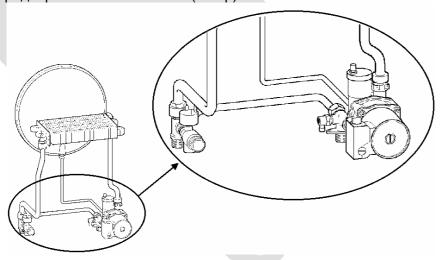
ЗАМЕТКИ:


ЗАМЕТКИ:

3.4 Теплообменник

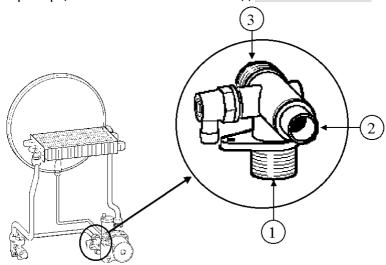
Корпус теплообменника изготовлен из меди, обработанной силиконом с целью предотвращения коррозии. Теплообменник передает тепло от продуктов сгорания газа к воде, которая циркулирует в контуре отопления и в контуре ГВС.

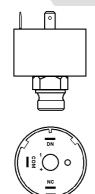
• Рабочее давление: 3 бар


• Максимальная температура: 110°C

3.5 Гидравлическая группа

Это многофункциональный легкоразборный узел, оборудованный следующими устройствами:


- Реле давления в контуре отопления.
- Автоматический бай-пасс
- Кран наполнения контура отопления
- Предохранительный клапан (3 бар).


3.6 Распределительный узел

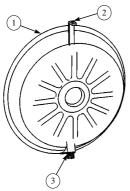
Распределительный узел обеспечивает соединение систем возврата, подачи и пропорционального бай-пасса в одном месте.

- 1) Возврат из системы отопления
- 2) Подключение к насосу
- 3) Подключение бай-пасса

3.7 Реле давления

- Давление: 1 бар
- Разница: 0,3 бар
- Ток / напряжение:

Нормально открытый: 10/250 Нормально закрытый: 16/250


 Максимальная 155°C температура:

Реле давления предотвращает розжиг горелки, если давление воды в системе недостаточное.

ЗАМЕТКИ:

3.8 Расширительный бак

- 1) Клапан
- 2) Крепление
- 3) Штуцер подсоединения к системе

ЗАМЕТКИ:

Характеристики:

• Объем:

• Давление азота:

• Максимальная рабочая температура:

• Максимальное рабочее давление:

6 литров 1 бар

90°C

3.0 бар

Бак предназначен для поглощения скачков давления, возникающих в первичном контуре при подъеме температуры в котле.

Он состоит из двух секций, разделенных между собой резиновой диафрагмой. В одной секции находится азот, с другой стороны подводится вода из первичного контура.

Камера, наполненная азотом, поглощает дополнительный объем воды, возникающий в результате ее температурного расширения. Расширительный бак спроектирован для работы в системе емкостью приблизительно 130 литров.

ЗАМЕТКИ:

4. СИСТЕМА ПОДАЧИ ГАЗА

4.1 Газовый клапан

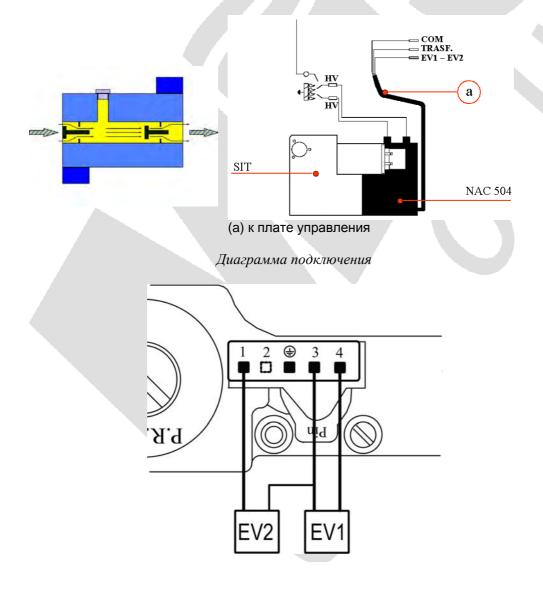
В изготовлении котлов используются следующие модели клапанов:

SIT 840

для моделей 10-15 RI – RFFI без модулятора с

рычагом регулировки плавного розжига

SIT 843


для моделей 21 — RI — RFFI; 28 RFFI с модулятором 220 В для работы на натуральном и сжиженном газе, и

регулировкой плавного розжига

Компонент 504NAC, установленный на клапане, служит для подачи питания на клапан и на катушку зажигания.

Компоненты клапана:

• 504 NAC

1

ЗАМЕТКИ:

4.1.1 Горелка

Атмосферного типа: воздух, требуемый для горения, затягивается газом, который выходит из форсунок газового коллектора.

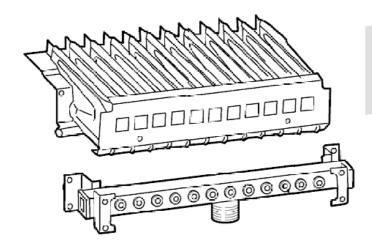
• Мультигазовая:

подходит для любого типа газа

• Соединительные элементы:

6 форсунок 10 RI RFFFI 8 форсунок 15 RI RFFI

12 форсунок 14 форсунок 21 RI RFFI 28 RFFI


Диаметр форсунок: природный

природный газ (G20)

Ø 1,30 мм;

сжиженный газ (G30 –31)

Ø 0,77 мм

4.1.2 Смена типа газа

- а) Снять горелку
- ь) Заменить форсунки и прокладки
- с) Отрегулировать клапан
- d) Заменить табличку на клапане

4.1.3 Регулировка давления газа

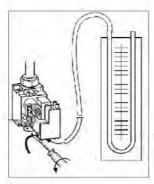
Не забудьте отсоединить компенсационную трубку в моделях с закрытой камерой.

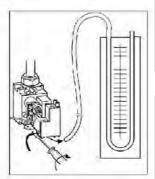
1) Проверить давление газа на входе

Нормальное давление:

20 мбар для природного газа

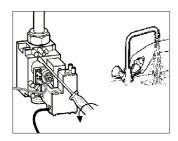
(минимальное - 17 мбар)

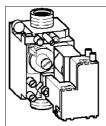

37 мбар для сжиженного газа

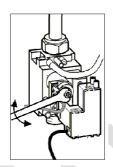

(минимальное 25 мбар)

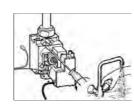
Максимальное допустимое давление: 45 мбар

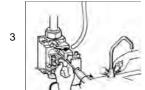
ЗАМЕТКИ:

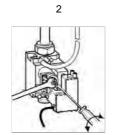

2) Максимальное давление на горелке в мбар


Тип газа	Модель котла					
	10 RI – RFFI	15 RI – RFFI	21 RI – RFFI	28 RFFI		
G20 природный	8,4	8,3	8,3	11		
сжиженный	25	25	31	31		


843






3) Минимальное давление на клапане в мбар

Тип газа	Модель котла					
	10 RI – RFFI	15 RI – RFFI	21 RI – RFFI	28 RFFI		
G20 природный	-	-	1,7	1,6		
сжиженный	1	-	5,7	4,6		

1



ЗАМЕТКИ:

4) Давление плавного розжига

	Модель котла			
	10-15 RI – RFFI	21 RI – RFFI	28 RFFI	
Положение рычага	6 часов	12 часов	3 часов	

4.2 НЕИСПРАВНОСТИ - ПРОВЕРКИ - ОБСЛУЖИВАНИЕ

Горелка

Закупоривание форсунок из-за плохого качества газа: заменить форсунки на никелированные.

При проведении обслуживания, прочистить сопла форсунок, соединительные элементы и вентури сжатым воздухом; если форсунки сильно загрязнены копотью, тщательно промойте компоненты водой.

Газовый клапан

- Обрыв катушки клапана; искра проскакивает, но горелка не зажигается, поскольку газовый клапан закрыт:
- Заменить клапан
 Сопротивление катушек: EV1 5800 Ом EV2 19200 Ом (230 В)
- Отражающая пластина клапана сломана, газ не поступает к форсункам: заменить клапан
- Забит газовый фильтр; из-за блокировки фильтра количество пропускаемого газа не достаточно для горения: прочистить фильтр или заменить клапан

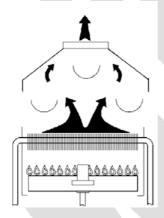
Модулятор

- Шум от катушки (вибрация) во время модуляции: заменить конденсатор 100-150 µF 50 В, соблюдая полярность (причиной шума может так же быть электронный зонд, закороченный на массу)
- Сгорела катушка модулятора, пламя не модулируется, а котел работает на минимуме: заменить модулятор или катушку
- Пружина и/или шток модуляторов сломаны, система не управляется: заменить модулятор, пружину или шток

ЗАМЕТКИ:

4.3 СИСТЕМА УДАЛЕНИЯ ПРОДУКТОВ СГОРАНИЯ

4.4 Открытая камера

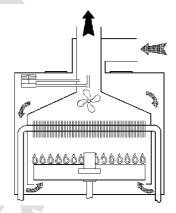

Тип В 11

Котлы типа В 11- это газовые приборы с открытой камерой сгорания, в которых воздух для горения подается из помещения, в котором установлен котел.

Дым удаляется естественной тягой через дымоход, минимальное сечение которого в два раза больше диаметра выхлопного порта прибора.

Датчик дымохода обеспечивает постоянный контроль за эвакуацией выхлопных газов.

Вентиляция помещения, в котором установлен котел, должна соответствовать норме - 6 cm^2 сечения дымохода на каждый кВт мощности котла. При этом площадь сечения дымохода должна быть не менее 100 cm^2


4.5 Закрытая камера

Тип С

Котлы типа С — это приборы с закрытой камерой с коаксиальной или двухтрубной системой дымохода, в которых воздух для горения подается снаружи помещения, в котором установлен котел, а выхлопные газы отводятся прямо наружу.

Вентилятор, находящийся снизу, удаляет дым из котла наружу.

Реле дифференциального давления осуществляет постоянный контроль за процессом отвода дыма.

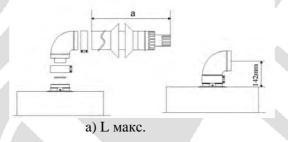
4.5.1 Вентилятор

Изготовлен из алюминия методом литья под давлением. Для котлов разной мощности используются разные вентиляторы.

4.5.2 Дифференциальное реле давления

Одна модель используется для котла 28 кВт, другая – для котлов 21-15-10 кВт.

Давление включения: 0,5 мбар для 28 кВт и 0,8 мбар для 21-15-10 кВт. Реле давления настроено на заводе-изготовителе.

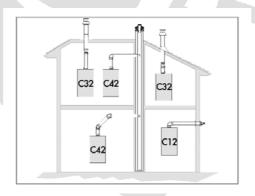

Для свободного доступа, порт реле находится снаружи котла.

В режиме ожидания контакты реле 3 (C) -2 (NO) должны быть разомкнуты. Вентури и трубки должны прочищаться при каждой проверке.

4.6 Системы отвода дыма

4.6.1 Коаксиальная система

В стандартный комплект коаксиального дымохода входят: коаксиальные трубы 100/60 или 125/80 мм длиной 1 м, колено 90° и набор уплотнителей и хомутов.


4.6.1.1 Расстояния

Система впуска/выпуска с коаксиальным дымоходом и коленом 90° должна иметь минимальную длину – 0,5 м, максимальную – 4 м.

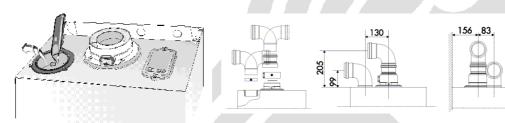
ВНИМАНИЕ!

Таблица внизу показывает применение ограничителя дымохода ∅46 мм в различных вариантах монтажа.

	Тип монтажа	Ограничитель ∅46мм
Коаксиальная	C12 (xx)	Lmin = 1 м
система	C32 (xx)	Lmax = 4 м
Ø 60/100	C42 (xx)	

ЗАМЕТКИ:

ЗАМЕТКИ:


4.6.2 Двухтрубная система

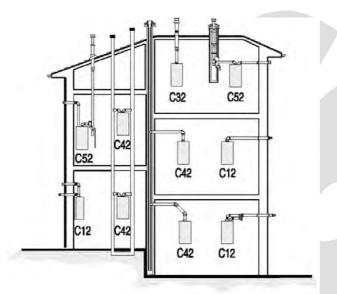
В случае невозможности обеспечения указанных выше расстояний при монтаже, следует использовать двухтрубную систему с отдельными трубами на впуск и выпуск.

В такой системе используются трубы \varnothing 80 мм, которые обеспечивают меньшие потери тяги.

Максимальные расстояния различных типов монтажа приведены в таблице внизу.

Потеря тяги на колене 90° соответствует потере на 0.5 прямой трубы того же диаметра; соответственно внедрение в систему каждого колена уменьшает допустимое развертывание дымохода на 0.5 м.

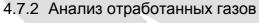
				0.5			
	Максимальное			Образова	ание конденс	ата на трубе	выхлопа
MicroSystem	Тип	разверт	ывание	Неизолирова	анные трубы	Изолирован	ные трубы
10-15-21	монтажа	С	Без	дроссель	Без	С	Без
RFFI		дросселем	дросселя	Ø46mm	дросселя	дросселем	дросселя
		Ø46mm				Ø46mm	
Двухтрубная система	C12 (xy) C32(xy) C42(xy)	Lmax =25м	34м	3,0м	4,5м	12,5м	16,0м
Ø80/80	C52(xy) C82(xy)	Lmax =25м	31м	3,3м	4,8м	14,0м	17,8м


MicroSystem	Максимальное Тип развертывание		Образова Неизолирова		ата на трубе Неизолиров		
28 RFFI	монтажа	С дросселем Ø41mm	Без дросселя	restrictor Ø41mm	Без дросселя	С дросселем ∅41mm	Без дросселя
Двухтрубная система	C12 (xy) C32(xy) C42(xy)	Lmax =38m	62m	8,0m	11,0m	19,0m	31,0m
Ø80/80	C52(xy) C82(xy)	Lmax =34m	54m	8,0m	11,0m	19,0m	31,0m

Значение L максимального развертывания дымохода указанное в таблице включает сумму длин труб впуска и выпуска.

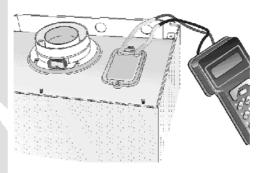
Тип монтажа С52 должен производится с учетом следующих требований:

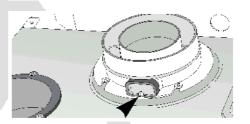
- Трубы впуска и выпуска должны иметь одинаковый диаметр Ø 80 мм.
- 2) При добавлении дополнительных колен в систему, не забывайте учитывать уменьшение допустимого расстояния системы на каждое колено.
- 3) Труба выпуска должна возвышаться над наивысшей точкой крыши на 0,5 м, если она установлена с другой стороны здания по отношению к трубе забора воздуха (это требование не обязательно, если забор воздуха и выпуск дыма смонтированы с одной стороны здания).


ЗАМЕТКИ:

4.7 Проверки

4.7.1 Замер дифференциального давления


Разницу давлений между впуском и выпуском можно измерить с помощью дифференциального манометра.


Порты подсоединения манометра находятся на крышке реле давления и легкодоступны при проведении работ. Необходимо снять крышку и подсоединить шланги манометра. Нормальные показания прибора должны быть как минимум $1.2\,$ мбар или $10\,$ мм H_2O .

Горение контролируется снаружи котла.

Окошко доступа находится у основания отверстия вхлопа.

5. ЭЛЕКТРИЧЕСКАЯ И ЭЛЕКТРОННАЯ СИСТЕМЫ

ЗАМЕТКИ:

5.1 Описание плат управления

5.1.1 Таблица

Плата управления	Описание
CT1	Основная плата
RT1	Реле для управления баком косвенного нагрева
CBM2 AT – MI 2X	Для котла с открытой камерой и ионконтролем
CBM2 AT – FFI 2X	Для котла с закрытой камерой и ионконтролем

Описание:

А Вкл/Выкл выключатель

В Вкл/Выкл зеленый индикатор

С Выключатель режима отопления

D Индикатор режима отопления

Е Кнопка перезапуска

F Индикатор неисправности

А01 реле минимального давления

А02 датчик антизамерзания

А03 модулятор

А04 насос

А05 термостат регулировки отопления

А06 Двойной термостат для отопления

и бака косвенного нагрева (для

английского рынка)

А07 таймер котла

А08 комнатный термостат

A09 дифф. реле/датчик тяги

А10 котел

А11 термостат перегрева

А12 питание - газовый клапан

А13 электрод ионизации

Цвет провода

W белый

BI голубой

Gr серый

Br коричневый

Blk черный

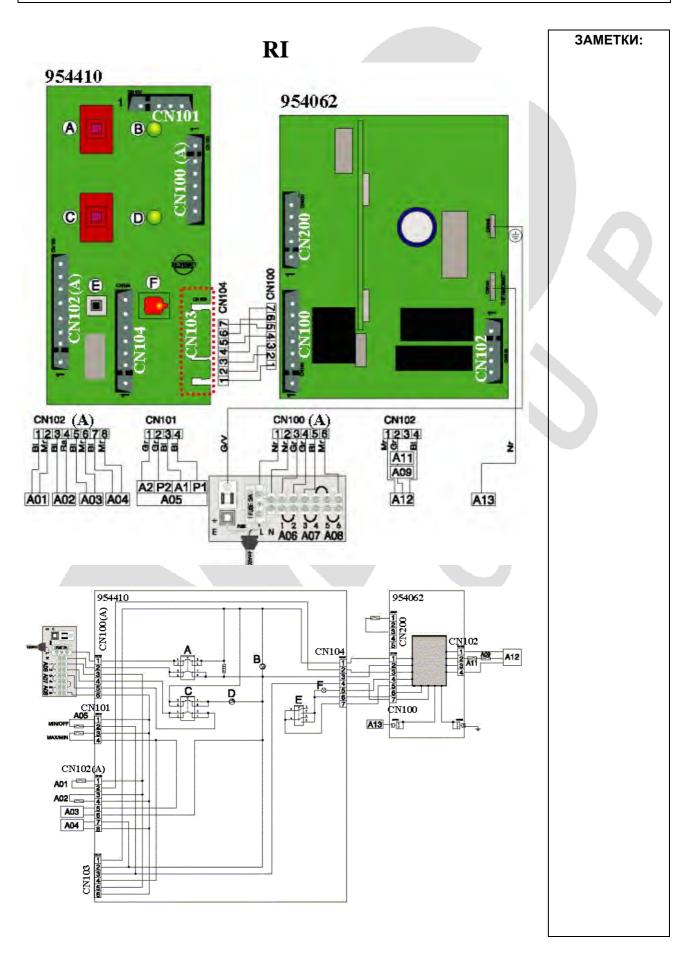
R красный

G/Y желтый с зелеными полосами

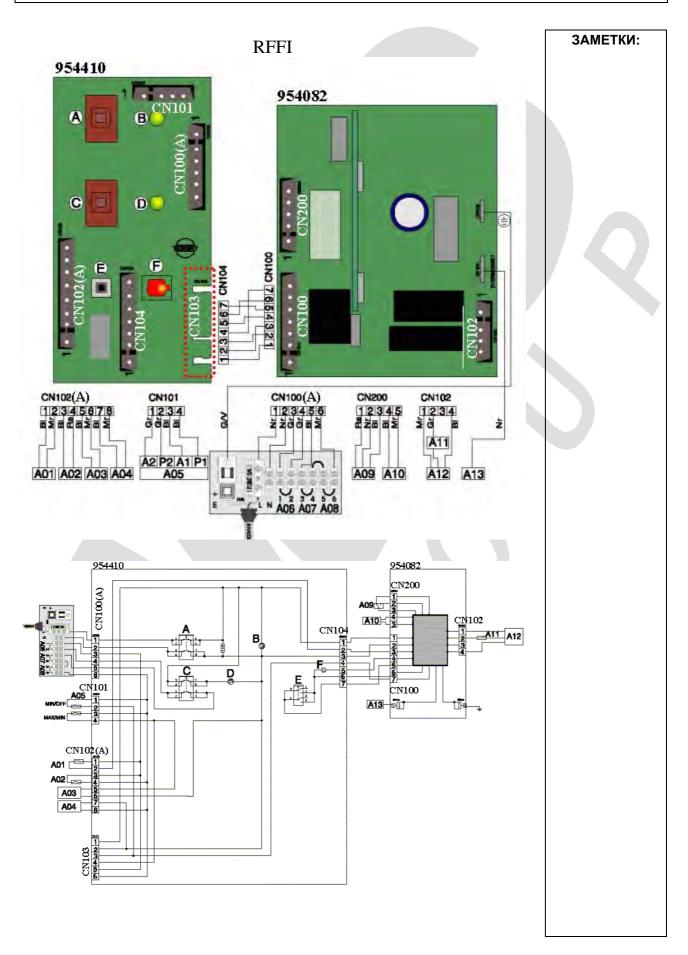
Возможные варианты подключения:

(А) Таймер отопительного контура и комнатный термостат

- Таймер отопительного контура и комнатный термостат один прибор, который подключается к разъему А07
- Только комнатный термостат, подключается к разъему А08
- Таймер ГВС, подключается к разъемам 10-15 на RT1 ПУ.


(В) Двойной таймер для отопительного контура и ГВС

- Подключить проводку таймера по отоплению к разъему А06, оставив перемычку между А07-А08
- Подключить таймер с левой стороны к контактам 10 15 на RT1 ПУ; Питание таймера 230 В подается от контактов 11 – 12 на RT1 ПУ


(С) Часы контура отопления

- Подключить часы к питанию ПУ 230 В
- Подключить к контакту А07

ЗАМЕТКИ:

5.1.2 Таблица функций ПУ

Функции	MI	FFI
электронный контроль пламени	CBM2	CBM2
дифф. реле / управление вентилятором	-	CBM2
управление генератором искры	(1)	(1)
контроль датчика пламени	CBM2	CBM2
контроль отключения при неисправности	CBM2	CBM2
управление работой 3-ходового клапана	RT1 (2)	RT1 (2)
управление работой термостата бака	RT1 (2)	RT1 (2)
Функция антизамерзания	(3)	(3)
Вкл/Выкл индикатор	X	Х
Индикатор неисправности	X	Х
Индикатор ЗИМА/ЛЕТО	X	Х

- (1) Только разъем для наружного управления
- (2) Управляется платой RT1 ПУ (аксессуар)
- (3) Контролируется термостатом ПУ СТ1.

5.2 Электропитание

- должно быть не • Минимальное напряжение ниже ~185B. напряжении ниже указанного возможны сбои системе искрообразования (слабая При падении искра). напряжения значительно уменьшаются обороты двигателя вентилятора, что приводит к падению тяги в дымоходе и низкому сигналу от дифференциального реле, что в свою очередь ведет к закрытию газового клапана.
- При подключении обращайте внимание на правильную полярность (фаза 0).
- Для защиты системы установлен предохранитель 2А.

5.3 Логика работы и безопасность

5.3.1 Дифференциальное реле давления (модели FFI)

Работа вентилятора контролируется дифференциальным реле (PF). В момент перезапуска, реле PF не должно быть в разомкнутом состоянии (NO); когда запускается вентилятор, загорается желтый индикатор, и горит пока, контакты реле давления не разомкнутся (NO). После того, как реле PF переключилось в режим (NO), начинается этап розжига горелки. Во время работы, если реле вышло из режима (NO) (например, в результате порыва ветра), работа котла остановится в целях безопасности. Разнос двигателя вентилятора не возможен.

5.3.2 Датчик тяги в дымоходе (модели MI)

Контроль осуществляется контактным термостатом с ручным перезапуском.

ЗАМЕТКИ:

5.3.3 Управление работой насоса

Подача напряжения на насос контролируется комбинированно через датчик минимального давления и управлением на розжиг с наружного термостата.

5.4 Регулировки

5.4.1 Управление температурой

Плата СТ1 связывается (по высокому напряжению) с механическим термостатом для управления температурой отопительного контура и приспособлена для подключения платы RT1 (аксессуар для контроля над температурой бака косвенного нагрева)

5.4.2 Режимы работы

Котлы модели MicroSystem — это котлы R типа, другими словами, они спроектированы для отопления помещений. Однако, их можно подключать к наружному баку косвенного нагрева для получения горячей санитарной воды (ГВС).

Возможны следующие конфигурации подключения:

1) Только отопление

Котел производит только горячую воду для системы отопления

- Если индикатор Вкл/Выкл не горит, котел не греет воду и функции котла отключены
- Если выключатель Вкл/Выкл включен (индикатор горит) и селектор ЗИМА/ЛЕТО находится в положении «ЛЕТО», активирован только режим антизамерзания (котел находится в режиме ожидания);
- Если селектор ЗИМА/ЛЕТО в положении «ЗИМА», функция нагрева воды в контуре отопления активируется.

Только часы и комнатный термостат, которые контролируют включение насоса, могут быть подключены к ПУ. Ручка установки температуры нагрева воды в контуре отопления соответствует двухступенчатому термостату, который контролирует мощность в пределах MAX – MIN – OFF

2) Система «котел + бак косвенного нагрева»

Котел работает совместно с баком косвенного нагрева для получения горячей санитарной воды. Соединение между котлом и баком производится посредством специального комплекта, который поставляется МТС и включает в себя ПУ RT1 с разъемом и кабелем для подключения к ПУ CT1-MI/FFI, пластиковый футляр, 3-входовой клапан, термостат для управления температурой воды ГВС в баке, который устанавливается на трубку выхода из теплообменника котла и термостат бака.

Система работает следующим образом:

Если индикатор Вкл/Выкл не горит, котел не греет воду и функции котла отключены

- Если выключатель Вкл/Выкл включен (индикатор горит), к котлу и баку подается напряжение.
- Если селектор ЗИМА/ЛЕТО находится в положении «ЛЕТО», активирована функция антизамерзания и нагрев воды в баке по

сигналу его термостата.

• Если селектор ЗИМА/ЛЕТО находится в положении «ЗИМА» активированы все функции котла, в том числе отопление и ГВС. ГВС имеет преимущество перед отоплением.

ЗАМЕТКИ:

Только часы и/или комнатный термостат могут быть подключены к ПУ котла.

Термостат контроля над температурой контура отопления, термостат ГВС, 3-входовой клапан с приводом, если необходимо, таймер для управления контуром отопления подключены к ПУ RT1. Напряжение на котел и таймер подается, когда выключатель Вкл/Вкл находится в положении включено.

При открытии крана ГВС (насос запускается и 3-входовой клапан переходит в положение ГВС), регулировка температуры воды в контуре котла, установленная регулятором на передней панели, автоматически игнорируется и управление температурой осуществляется термостатом ГВС (установка на 80°С). Котел в режиме ГВС работает на максимальной мощности.

Режим ГВС всегда имеет преимущество перед режимом отопления; если запрос на ГВС удовлетворен и котел находится в режиме «ЗИМА» включается отопление, как описано выше, и 3-входовой клапан переключается в положение на отопление.

3) "Английская система" с комплектом для рынка Великобритании, поставляемым другими производителями (Dunfoss, Honeywell)

В этом случае котел работает совместно с баком косвенного нагрева. Соединение с баком осуществляется через комплект, поставляемый другими производителями, в частности для рынка Великобритании. Такой комплект включает:

- 1) "UK" интерфейс
- 1) управляемый 3-входовой клапан (система "Y") или 2 зональных клапана (система "S").
- 2) таймер для контроля над температурой отопления и ГВС,
- 3) термостат для контроля над температурой котла
- 4) комнатный термостат

Существенная разница между двумя этими системами заключается в том, что бак косвенного нагрева не контролируется отдельно и управляется так, как если бы он являлся частью системы отопления. В этом случае бак косвенного нагрева нельзя рассматривать с точки зрения выполнения требования на приготовление ГВ и, соответственно, селектор ЗИМА/ЛЕТО теряет часть своих функций и действует только в режиме «ЗИМА». Поэтому, для придания системе функции ГВС, селектор должен быть все время включен в положение «ЗИМА». Кроме того, таймер системы отопления и комнатный термостат управляются "UK" интерфейсом, поэтому соответствующие перемычки на ПУ котла не должны быть удалены.

"UK" интерфейс соединяется с ПУ котла через разъем на плате управления и обладает логикой управления внешнего устройства, не связанного с логикой управления котлом.

"Английская система" работает следующим образом:

- если выключатель Вкл/Выкл в положении выключено (индикатор не горит), питание на котел и бак не подается и все функции котла отключены.
- Note:
- если выключатель Вкл/Выкл в положении включено (индикатор горит) питание подается на котел; к тому же, если котел не самоотключался по причине неисправности и реле минимального давления передает сигнал, на систему «UK» тоже подается напряжение. Следует помнить, что, если даже питание подается на котел, таймер и термостат «UK» могут быть обесточены. В такой конфигурации, если селектор ЗИМА/ЛЕТО в положении «ЛЕТО» (индикатор не горит), активирована только функция антизамерзания.
- если селектор ЗИМА/ЛЕТО в положении «ЗИМА» (индикатор горит), котел может быть активирован по запросу от «UK» интерфейса.

По команде «UK» интерфейса, который контролирует работу 3входового клапана и зональных клапанов, котел начинает греть воду в соответствии с установкой на регуляторе передней панели; важно установить этот регулятор в максимальный режим, чтобы обеспечить, при необходимости, быстрый нагрев бака. Следует помнить, что такая конфигурация не согласуется с применением дополнительного термостата, как это возможно с обычной системой «котел+бак». Горелка котла все время работает в режиме Выкл/Минимум/Максимум (модуляция пламени осуществляется постоянно, как в режиме отопления, так и в режиме ГВС, поскольку ПУ воспринимает команду на ГВС так же, как и команду на отопление).

5.4.3 Предохранительный термостат - часы – комнатный термостат Они подключаются прямо к ПУ котла к одному из высоковольтных выводов (контактная панель отсутствует). Термостат бака (аксессуар) Контролируется ПУ RT1.

5.4.4 Селектор режимов работы

Он управляется кнопкой:

• ЛЕТО: только водонагреватель

• ЗИМА: отопление и водонагреватель

5.4.5 Механизм антизамерзания

ПУ СТ1 подключена к механическому термостату, чтобы управлять функцией антизамерзания: если контакт термостата замкнут, котел активируется вне зависимости от положения селектора ЗИМА/ЛЕТО сигналов внешних термостатов.

5.5 Диагностика

ПУ СТ1 индикация:

- ПУ активирована зеленый индикатор горит
- Самоотключение по неисправности горит красный индикатор
- Индикатор "ЗИМА/ЛЕТО" горит = режим «ЗИМА», Индикатор "ЗИМА/ЛЕТО" не горит = «ЛЕТО»